Kalisch and B\"{u}hlmann (2007) showed that for linear Gaussian models, under the Causal Markov Assumption, the Strong Causal Faithfulness Assumption, and the assumption of causal sufficiency, the PC algorithm is a uniformly consistent estimator of the Markov Equivalence Class of the true causal DAG for linear Gaussian models; it follows from this that for the identifiable causal effects in the Markov Equivalence Class, there are uniformly consistent estimators of causal effects as well. The $k$-Triangle-Faithfulness Assumption is a strictly weaker assumption that avoids some implausible implications of the Strong Causal Faithfulness Assumption and also allows for uniformly consistent estimates of Markov Equivalence Classes (in a weakened sense), and of identifiable causal effects. However, both of these assumptions are restricted to linear Gaussian models. We propose the Generalized $k$-Triangle Faithfulness, which can be applied to any smooth distribution. In addition, under the Generalized $k$-Triangle Faithfulness Assumption, we describe the Edge Estimation Algorithm that provides uniformly consistent estimates of causal effects in some cases (and otherwise outputs "can't tell"), and the \textit{Very Conservative }$SGS$ Algorithm that (in a slightly weaker sense) is a uniformly consistent estimator of the Markov equivalence class of the true DAG.


翻译:Kalisch和B\"{u}hlmann(2007年)显示,对于线性高斯模型来说,在Causal Markov Asumption, 强烈的Causal Fausal Faithity Asumption 和因果关系充分性假设之下,PC 算法是对线性高斯模型真正因果DAG等级一致一致的估算者;但从这一点可以看出,对于Markov Equivalence 级的可识别因果效应而言,也有一致一致的因果关系估计者。美元-三角对因果效应的估算者,在Causal Markal Facession Asumation中,美元-faxlistality Asumation是一个非常弱的假设。此外,在“Generalal-surity ALvalvalence” 类中,“Scial-alcial-al-alimation Aclialal Excial Excial Excial Excial”中,“Scial-al-al-Ical-al-Iversal-Ideal-al-Ideal-Ideal excial exal concial concial Procial Procial Procial exction vial sution exal exction Acal exction Acal exal exal exction Applection ” 。我们),我们提出, 。我们提议。我们提议。我们提议。我们提议,我们提出,我们提出, 和Axal- 和Axal-Ial-al-I-I-I-I-I-I-al-al-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I

0
下载
关闭预览

相关内容

《机器学习思维导图》,一图掌握机器学习知识要点
专知会员服务
68+阅读 · 2021年1月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年10月12日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年9月1日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年10月12日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员