A truly universal AI-Generated Image (AIGI) detector must simultaneously generalize across diverse generative models and varied semantic content. Current state-of-the-art methods learn a single, entangled forgery representation, conflating content-dependent flaws with content-agnostic artifacts, and are further constrained by outdated benchmarks. To overcome these limitations, we propose OmniAID, a novel framework centered on a decoupled Mixture-of-Experts (MoE) architecture. The core of our method is a hybrid expert system designed to decouple: (1) semantic flaws across distinct content domains, and (2) content-dependent flaws from content-agnostic universal artifacts. This system employs a set of Routable Specialized Semantic Experts, each for a distinct domain (e.g., human, animal), complemented by a Fixed Universal Artifact Expert. This architecture is trained using a novel two-stage strategy: we first train the experts independently with domain-specific hard-sampling to ensure specialization, and subsequently train a lightweight gating network for effective input routing. By explicitly decoupling "what is generated" (content-specific flaws) from "how it is generated" (universal artifacts), OmniAID achieves robust generalization. To address outdated benchmarks and validate real-world applicability, we introduce Mirage, a new large-scale, contemporary dataset. Extensive experiments, using both traditional benchmarks and our Mirage dataset, demonstrate our model surpasses existing monolithic detectors, establishing a new and robust standard for AIGI authentication against modern, in-the-wild threats.
翻译:一个真正通用的AI生成图像(AIGI)检测器必须同时泛化至多样的生成模型和变化的语义内容。当前最先进的方法学习单一、纠缠的伪造表征,将内容相关的缺陷与内容无关的伪影混为一谈,且进一步受限于过时的基准测试。为克服这些局限,我们提出OmniAID,一个以解耦的混合专家(MoE)架构为核心的新颖框架。我们方法的核心是一个旨在解耦的混合专家系统:(1)不同内容领域(如人类、动物)的语义缺陷,以及(2)内容相关的缺陷与内容无关的通用伪影。该系统采用一组可路由的专用语义专家,每个专家针对一个特定领域,并辅以一个固定的通用伪影专家。该架构通过一种新颖的两阶段策略进行训练:我们首先使用领域特定的硬采样独立训练各专家以确保其专业性,随后训练一个轻量级的门控网络以实现有效的输入路由。通过明确地将“生成什么”(内容特定缺陷)与“如何生成”(通用伪影)解耦,OmniAID实现了鲁棒的泛化能力。为解决基准测试过时问题并验证现实世界适用性,我们引入了Mirage,一个新的、大规模且具有时效性的数据集。使用传统基准测试和我们的Mirage数据集进行的广泛实验表明,我们的模型超越了现有的单体检测器,为应对现代、开放环境下的威胁,建立了全新且鲁棒的AIGI认证标准。