Turing's famous 'machine' model constitutes the first intuitively convincing framework for computing with real numbers. Kleene's computation schemes S1-S9 extend Turing's approach and provide a framework for computing with objects of any finite type. Various research programs have been proposed in which higher-order objects, like functions on the real numbers, are represented/coded as real numbers, so as to make them amenable to the Turing framework. It is then a natural question whether there is any significant difference between the Kleene approach or the Turing-approach-via-codes. Continuous functions being well-studied in this context, we study functions of bounded variation, which have at most countably many points of discontinuity. A central result is the Jordan decomposition theorem that a function of bounded variation on $[0, 1]$ equals the difference of two monotone functions. We show that for this theorem and related results, the difference between the Kleene approach and the Turing-approach-via-codes is huge, in that full second-order arithmetic readily comes to the fore in Kleenes approach, in the guise of Kleene's quantifier $\exists^3$.
翻译:图灵著名的图灵“机器”模型是第一个直觉令人信服的真实数字计算框架。 Kleene的 S1- S9 计算方法扩展图灵的方法,并为使用任何有限类型对象进行计算提供了一个框架。 提出了各种研究方案, 将像实际数字上的函数一样的较高顺序对象作为真实数字表示/ 编码, 以便使其与图灵框架相适应。 然后, 这是一个自然的问题, Kleene 方法或图灵- aproach- via- code 之间是否有重大区别。 持续函数正在受到很好地研究, 我们研究受约束的变异功能, 而这些变异的功能在不连续性性方面有非常多的可观点。 中心结果是, 约旦解析了在 $[0, 1] 上的受约束变异函数相当于两个单调函数的区别。 我们证明, 对于这个对象和相关结果, Kleene 方法与图灵- aproach- code 之间是否有重大区别。 在这种背景下, 我们研究受约束的第二阶值计算方法中, Kleen- decreforalalalalexticalextical 3 将进入Kleaslietalexlietal 。