Principal stratification is a popular framework for causal inference in the presence of an intermediate outcome. While the principal average treatment effects are the standard target of inference, they may be insufficient when interest lies in the relative ordering of potential outcomes within a principal stratum. We introduce the principal generalized causal effect estimands to accommodate nonlinear contrast functions, providing robust, probability-scale summaries suitable for ordinal outcomes and win-loss comparisons with composite endpoints. Under principal ignorability, we expand the theoretical results in Jiang et al. (2022, JRSSB) to a broader class of causal estimands in the presence of a binary intermediate variable. We develop nonparametric identification results and derive efficient influence functions for the generalized causal estimands in principal stratification analyses. These efficient influence functions motivate multiply robust estimators and lay the ground for obtaining efficient debiased machine learning estimators via cross-fitting based on U-statistics. The proposed methods are illustrated through simulations and the analysis of a data example.
翻译:主分层是存在中间结果时进行因果推断的一种常用框架。虽然主平均处理效应是标准的推断目标,但当研究兴趣在于主层内潜在结果的相对排序时,这些效应可能不够充分。我们引入了主广义因果效应估计量以容纳非线性对比函数,为有序结果和具有复合终点的胜败比较提供了稳健的概率尺度概括。在主可忽略性假设下,我们将Jiang等人(2022, JRSSB)的理论结果扩展至存在二元中间变量时更广泛的因果估计量类别。我们发展了非参数识别结果,并推导了主分层分析中广义因果估计量的有效影响函数。这些有效影响函数启发了多重稳健估计量,并为通过基于U统计量的交叉拟合获得高效的去偏机器学习估计量奠定了基础。所提出的方法通过模拟分析和数据实例得到了说明。