Probabilistic programming provides a high-level framework for specifying statistical models as executable programs with built-in randomness and conditioning. Existing inference techniques, however, typically compute posterior distributions over program states at fixed time points, most often at termination, thereby failing to capture the temporal evolution of probabilistic behaviors. We introduce temporal posterior inference (TPI), a new framework that unifies probabilistic programming with temporal logic by computing posterior distributions over execution traces that satisfy omega-regular specifications, conditioned on possibly temporal observations. To obtain rigorous quantitative guarantees, we develop a new method for computing upper and lower bounds on the satisfaction probabilities of omega-regular properties. Our approach decomposes Rabin acceptance conditions into persistence and recurrence components and constructs stochastic barrier certificates that soundly bound each component. We implement our approach in a prototype tool, TPInfer, and evaluate it on a suite of benchmarks, demonstrating effective and efficient inference over rich temporal properties in probabilistic models.


翻译:概率规划提供了一个高层框架,可将统计模型描述为具有内置随机性和条件约束的可执行程序。然而,现有的推断技术通常仅计算程序在固定时间点(最常见的是终止时刻)的状态后验分布,因而无法捕捉概率行为的时间演化特性。本文提出时序后验推断这一新框架,通过计算满足Omega-regular规范且受可能具有时序性的观测条件约束的执行轨迹后验分布,将概率规划与时序逻辑相统一。为获得严格的定量保证,我们开发了一种计算Omega-regular性质满足概率上下界的新方法。该方法将Rabin接受条件分解为持续性和循环性分量,并构造可严格界定各分量的随机屏障证书。我们在原型工具TPInfer中实现了该方法,并通过基准测试集进行评估,展示了在概率模型中对复杂时序性质进行高效推断的有效性。

0
下载
关闭预览

相关内容

本话题关于日常用语「概率」,用于讨论生活中的运气、机会,及赌博、彩票、游戏中的「技巧」。关于抽象数学概念「概率」的讨论,请转 概率(数学)话题。
【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
专知会员服务
23+阅读 · 2021年6月22日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 12月22日
VIP会员
相关VIP内容
【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
专知会员服务
23+阅读 · 2021年6月22日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员