Understanding the structure of a protein complex is crucial indetermining its function. However, retrieving accurate 3D structures from microscopy images is highly challenging, particularly as many imaging modalities are two-dimensional. Recent advances in Artificial Intelligence have been applied to this problem, primarily using voxel based approaches to analyse sets of electron microscopy images. Herewe present a deep learning solution for reconstructing the protein com-plexes from a number of 2D single molecule localization microscopy images, with the solution being completely unconstrained. Our convolutional neural network coupled with a differentiable renderer predicts pose and derives a single structure. After training, the network is dis-carded, with the output of this method being a structural model which fits the data-set. We demonstrate the performance of our system on two protein complexes: CEP152 (which comprises part of the proximal toroid of the centriole) and centrioles.
翻译:了解蛋白质综合体的结构是决定其功能的关键。 然而,从显微镜图像中检索准确的三维结构是极具挑战性的,特别是因为许多成像模式是二维的。 人工智能的最近进展已应用于这一问题, 主要是使用基于 voxel 的方法分析电子显微镜的成套图象。 这里我们提出了一个深层次的学习解决方案, 用于从多个 2D 单分子局部化显微镜中重建蛋白双倍的蛋白, 其解决方案是完全不受限制的。 我们的进化神经网络, 加上不同的投影器预测, 呈现出一个单一的结构。 培训后, 网络被删除, 其输出为符合数据集的结构模型 。 我们展示了我们系统在两个蛋白综合体( CEP152 (由半氧化物的固化剂组成部分) 和 子子体(CEPEP152) 的性能。