Generative commonsense question answering (GenCQA) is a task of automatically generating a list of answers given a question. The answer list is required to cover all reasonable answers. This presents the considerable challenges of producing diverse answers and ranking them properly. Incorporating a variety of closely-related background knowledge into the encoding of questions enables the generation of different answers. Meanwhile, learning to distinguish positive answers from negative ones potentially enhances the probabilistic estimation of plausibility, and accordingly, the plausibility-based ranking. Therefore, we propose a Knowledge Enhancement and Plausibility Ranking (KEPR) approach grounded on the Generate-Then-Rank pipeline architecture. Specifically, we expand questions in terms of Wiktionary commonsense knowledge of keywords, and reformulate them with normalized patterns. Dense passage retrieval is utilized for capturing relevant knowledge, and different PLM-based (BART, GPT2 and T5) networks are used for generating answers. On the other hand, we develop an ELECTRA-based answer ranking model, where logistic regression is conducted during training, with the aim of approximating different levels of plausibility in a polar classification scenario. Extensive experiments on the benchmark ProtoQA show that KEPR obtains substantial improvements, compared to the strong baselines. Within the experimental models, the T5-based GenCQA with KEPR obtains the best performance, which is up to 60.91% at the primary canonical metric Inc@3. It outperforms the existing GenCQA models on the current leaderboard of ProtoQA.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员