Model-based reinforcement learning is a compelling framework for data-efficient learning of agents that interact with the world. This family of algorithms has many subcomponents that need to be carefully selected and tuned. As a result the entry-bar for researchers to approach the field and to deploy it in real-world tasks can be daunting. In this paper, we present MBRL-Lib -- a machine learning library for model-based reinforcement learning in continuous state-action spaces based on PyTorch. MBRL-Lib is designed as a platform for both researchers, to easily develop, debug and compare new algorithms, and non-expert user, to lower the entry-bar of deploying state-of-the-art algorithms. MBRL-Lib is open-source at https://github.com/facebookresearch/mbrl-lib.
翻译:以模型为基础的强化学习是同世界互动的代理商进行数据高效学习的有力框架。 这种算法组合有许多需要仔细选择和调整的子组件。 因此,研究人员接近实地并将其用于现实世界任务的进入栏可能非常艰巨。 在本文中,我们介绍了MBRL-Lib -- -- 一个基于PyTorch的基于模型的州际连续行动空间强化学习的机械学习图书馆。 MBRL-Lib是设计为研究人员和非专家用户设计一个平台的,以方便开发、调试和比较新的算法,降低部署最新算法的进入栏。 MBRL-Lib是在https://github.com/facebookresearch/mbrl-lib的公开来源。