We derive a new closed-form variance-adaptive confidence sequence (CS) for estimating the average conditional mean of a sequence of bounded random variables. Empirically, it yields the tightest closed-form CS we have found for tracking time-varying means, across sample sizes up to $\approx 10^6$. When the observations happen to have the same conditional mean, our CS is asymptotically tighter than the recent closed-form CS of Waudby-Smith and Ramdas [38]. It also has other desirable properties: it is centered at the unweighted sample mean and has limiting width (multiplied by $\sqrt{t/\log t}$) independent of the significance level. We extend our results to provide a CS with the same properties for random matrices with bounded eigenvalues.


翻译:本文推导了一种新的闭式方差自适应置信序列(CS),用于估计有界随机变量序列的条件均值平均值。经验表明,该置信序列在样本量高达约$10^6$的范围内,为追踪时变均值提供了我们所发现的最紧致的闭式CS。当观测值恰好具有相同条件均值时,我们的CS渐近地紧于Waudby-Smith和Ramdas[38]最近提出的闭式CS。该置信序列还具有其他理想特性:以未加权样本均值为中心,且其极限宽度(乘以$\sqrt{t/\log t}$)与显著性水平无关。我们将结果扩展至有界特征值随机矩阵,提供了具有相同性质的CS。

0
下载
关闭预览

相关内容

数学上,序列是被排成一列的对象(或事件);这样每个元素不是在其他元素之前,就是在其他元素之后。这里,元素之间的顺序非常重要。
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【NeurIPS2021】序一致因果图的多任务学习
专知会员服务
20+阅读 · 2021年11月7日
专知会员服务
50+阅读 · 2021年6月2日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
傅里叶变换和拉普拉斯变换的物理解释及区别
算法与数学之美
11+阅读 · 2018年2月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【NeurIPS2021】序一致因果图的多任务学习
专知会员服务
20+阅读 · 2021年11月7日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
傅里叶变换和拉普拉斯变换的物理解释及区别
算法与数学之美
11+阅读 · 2018年2月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员