We propose a way to transform synchronous distributed algorithms solving locally greedy and mendable problems into self-stabilizing algorithms in anonymous networks. Mendable problems are a generalization of greedy problems where any partial solution may be transformed -- instead of completed -- into a global solution: every time we extend the partial solution we are allowed to change the previous partial solution up to a given distance. Locally here means that to extend a solution for a node, we need to look at a constant distance from it. In order to do this, we propose the first explicit self-stabilizing algorithm computing a $(k,k-1)$-ruling set (i.e. a "maximal independent set at distance $k$"). By combining multiple time this technique, we compute a distance-$K$ coloring of the graph. With this coloring we can finally simulate \local~model algorithms running in a constant number of rounds, using the colors as unique identifiers. Our algorithms work under the Gouda daemon, which is similar to the probabilistic daemon: if an event should eventually happen, it will occur under this daemon.


翻译:自我稳定任何本地贪婪问题

0
下载
关闭预览

相关内容

【斯坦福博士论文】用于系统设计的图算法,130页pdf
专知会员服务
39+阅读 · 2022年8月22日
【2022新书】强化学习工业应用,408页pdf
专知会员服务
229+阅读 · 2022年2月3日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
24+阅读 · 2019年11月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
ORB_SLAM3和之前版本有什么不同?
计算机视觉life
11+阅读 · 2020年7月30日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2022年10月15日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员