We introduce refutationally complete superposition calculi for intentional and extensional clausal $\lambda$-free higher-order logic, two formalisms that allow partial application and applied variables. The calculi are parameterized by a term order that need not be fully monotonic, making it possible to employ the $\lambda$-free higher-order lexicographic path and Knuth-Bendix orders. We implemented the calculi in the Zipperposition prover and evaluated them on Isabelle/HOL and TPTP benchmarks. They appear promising as a stepping stone towards complete, highly efficient automatic theorem provers for full higher-order logic.
翻译:我们引入了故意和扩展的低价低价超值超值计算法,这是允许部分应用和应用变量的两种形式主义逻辑。计算法使用一个不需要完全单调的术语顺序作为参数,这样就可以使用免费的低价高价高价地谱路径和Knuth-Bendix命令。我们在Zipperposition 验证器中应用了计算法,并在Isabelle/HOL和TPTP基准中对其进行了评估。它们似乎有望成为完整、高效的自动自动理论验证器,以达到完全高价逻辑的踏脚石。