There is an old conjecture by Shermer \cite{sher} that in a polygon with $n$ vertices and $h$ holes, $\lfloor \dfrac{n+h}{3} \rfloor$ vertex guards are sufficient to guard the entire polygon. The conjecture is proved for $h=1$ by Shermer \cite{sher} and Aggarwal \cite{aga} seperately. In this paper, we prove a theorem similar to the Shermer's conjecture for a special case where the goal is to guard the vertices of the polygon (not the entire polygon) which is equivalent to finding a dominating set for the visibility graph of the polygon. Our proof also guarantees that the selected vertex guards also cover the entire outer boundary (outer perimeter of the polygon) as well.
翻译:Shermer\ cite{sher} 的一个老的猜想是,在有美元脊椎和美元洞的多边形中, $\l ploper\ dfrac{n+h}3}\ rplo$ 顶点警卫足以守卫整个多边形。 Shermer\ cite{sher} 和 Aggarwal\cite{ga} 的猜想证明了$=1美元。 在本文中, 我们证明了一个与Shermer 的猜想相似的理论, 在一个特殊案例中, 目标是守卫多边形( 不是整个多边形) 的顶点, 这相当于为多边形的可见度图找到一个占位符。 我们的证据还保证了选中的顶点警卫也覆盖了整个外部边界( 多边的外围) 。