The ACM WSDM WebTour 2021 Challenge organized by Booking.com focuses on applying Session-Aware recommender systems in the travel domain. Given a sequence of travel bookings in a user trip, we look to recommend the user's next destination. To handle the large dimensionality of the output's space, we propose a many-to-many RNN model, predicting the next destination chosen by the user at every sequence step as opposed to only the final one. We show how this is a computationally efficient alternative to doing data augmentation in a many-to-one RNN, where we consider every subsequence of a session starting from the first element. Our solution achieved 4th place in the final leaderboard, with an accuracy@4 of 0.5566.
翻译:由 Booking.com 组织的ACM WSDM WebTTour 2021 挑战由 Booking.com 组织, 重点是在旅行领域应用会话软件推荐系统。 根据用户行程中的旅行预订顺序, 我们期待推荐用户下一个目的地。 要处理输出空间的巨大维度, 我们提议一个多到多的 RNN 模型, 预测用户在每个序列步骤中选择的下一个目的地, 而不是最后一步 。 我们显示这是如何在多到一个 RNN 中进行数据扩增的计算效率高的替代方法, 我们从第一个元素开始考虑会议的每个子序列。 我们的解决方案在最后的引导板中达到了第4位, 准确度为 05566 。