The ACM WSDM WebTour 2021 Challenge organized by Booking.com focuses on applying Session-Aware recommender systems in the travel domain. Given a sequence of travel bookings in a user trip, we look to recommend the user's next destination. To handle the large dimensionality of the output's space, we propose a many-to-many RNN model, predicting the next destination chosen by the user at every sequence step as opposed to only the final one. We show how this is a computationally efficient alternative to doing data augmentation in a many-to-one RNN, where we consider every subsequence of a session starting from the first element. Our solution achieved 4th place in the final leaderboard, with an accuracy@4 of 0.5566.


翻译:由 Booking.com 组织的ACM WSDM WebTTour 2021 挑战由 Booking.com 组织, 重点是在旅行领域应用会话软件推荐系统。 根据用户行程中的旅行预订顺序, 我们期待推荐用户下一个目的地。 要处理输出空间的巨大维度, 我们提议一个多到多的 RNN 模型, 预测用户在每个序列步骤中选择的下一个目的地, 而不是最后一步 。 我们显示这是如何在多到一个 RNN 中进行数据扩增的计算效率高的替代方法, 我们从第一个元素开始考虑会议的每个子序列。 我们的解决方案在最后的引导板中达到了第4位, 准确度为 05566 。

0
下载
关闭预览

相关内容

数据增强在机器学习领域多指采用一些方法(比如数据蒸馏,正负样本均衡等)来提高模型数据集的质量,增强数据。
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN最新研究进展综述
机器学习研究会
25+阅读 · 2018年1月6日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
3+阅读 · 2018年12月21日
Arxiv
9+阅读 · 2018年1月30日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN最新研究进展综述
机器学习研究会
25+阅读 · 2018年1月6日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员