The single-hidden-layer Randomly Weighted Feature Network (RWFN) introduced by Hong and Pavlic (2021) was developed as an alternative to neural tensor network approaches for relational learning tasks. Its relatively small footprint combined with the use of two randomized input projections -- an insect-brain-inspired input representation and random Fourier features -- allow it to achieve rich expressiveness for relational learning with relatively low training cost. In particular, when Hong and Pavlic compared RWFN to Logic Tensor Networks (LTNs) for Semantic Image Interpretation (SII) tasks to extract structured semantic descriptions from images, they showed that the RWFN integration of the two hidden, randomized representations better captures relationships among inputs with a faster training process even though it uses far fewer learnable parameters. In this paper, we use RWFNs to perform Visual Relationship Detection (VRD) tasks, which are more challenging SII tasks. A zero-shot learning approach is used with RWFN that can exploit similarities with other seen relationships and background knowledge -- expressed with logical constraints between subjects, relations, and objects -- to achieve the ability to predict triples that do not appear in the training set. The experiments on the Visual Relationship Dataset to compare the performance between RWFNs and LTNs, one of the leading Statistical Relational Learning frameworks, show that RWFNs outperform LTNs for the predicate-detection task while using fewer number of adaptable parameters (1:56 ratio). Furthermore, background knowledge represented by RWFNs can be used to alleviate the incompleteness of training sets even though the space complexity of RWFNs is much smaller than LTNs (1:27 ratio).
翻译:由Hong 和 Pavlic (2021年) 推出的单隐藏层随机超常功能网络(RWFFFF)是用来替代神经超强网络对关系学习任务的一种替代方法。其相对较小的足迹,加上使用两种随机输入预测 -- -- 昆虫-脑动输入代表和随机的 Fourier 功能 -- -- 使得它能够以相对较低的培训成本实现丰富的显示感官学习的清晰度。特别是当Hong和Pavlic将RWFN与逻辑Tensor 网络(LTNSN) 相比, 用于SWFN 的语义图像解释(SII) 参数(SII) 以从图像中提取结构化的语义表达式语义性描述,它们显示RWFN的语义关系和随机化表达式表达方式结合了两个隐性输入器之间的关系,尽管它使用的可学习参数要少得多。 在本文件中,我们使用 RFFFS 的直径探测任务(VR) 任务任务中, 的不完全的学习方法可以用来利用其他见的关系和背景知识的相似性学习背景。在RLIFFFSL 上显示的里程中, 的里程上显示的能力显示的里程中,虽然显示的里程,但显示显示的里程的比比显示的一种直径。