We develop a category-theoretic criterion for determining the equivalence of causal models having different but homomorphic directed acyclic graphs over discrete variables. Following Jacobs et al. (2019), we define a causal model as a probabilistic interpretation of a causal string diagram, i.e., a functor from the ``syntactic'' category $\textsf{Syn}_G$ of graph $G$ to the category $\textsf{Stoch}$ of finite sets and stochastic matrices. The equivalence of causal models is then defined in terms of a natural transformation or isomorphism between two such functors, which we call a $\Phi$-abstraction and $\Phi$-equivalence, respectively. It is shown that when one model is a $\Phi$-abstraction of another, the intervention calculus of the former can be consistently translated into that of the latter. We also identify the condition under which a model accommodates a $\Phi$-abstraction, when transformations are deterministic.
翻译:我们为确定因果模型的等值制定了一个分类理论标准,这些模型具有不同但同质方向的单流图,但与离散变量相对应。在Jacobs等人(2019年)之后,我们将因果模型定义为对因果字符串图的概率解释,即“合成”类中的“美元/textsf{Syn ⁇ G$”的配方,即“美元/textsf{Stoch}$G美元”到定数组和随机矩阵的等值。然后,根据自然变异或两个这种变异因素的等值来定义因果模型的等值,我们称之为“$/Phi$-abstraction”和“$/Phi$-evalence”之间的等值。显示,当一个模型为美元/Phi$-abstraction时,前者的干预计数可以一致地转换成后者。我们还确定了模型容纳美元/Phi$-astraction的条件。