Recent works have explored the use of weight sparsity to improve the training efficiency (test accuracy w.r.t training FLOPs) of deep neural networks (DNNs). These works aim to reduce training FLOPs but training with sparse weights often leads to accuracy loss or requires longer training schedules, making the resulting training efficiency less clear. In contrast, we focus on using sparsity to increase accuracy while using the same FLOPs as the dense model and show training efficiency gains through higher accuracy. In this work, we introduce Sparse-IFT, a family of Sparse Iso-FLOP Transformations which are used as drop-in replacements for dense layers to improve their representational capacity and FLOP efficiency. Each transformation is parameterized by a single hyperparameter (sparsity level) and provides a larger search space to find optimal sparse masks. Without changing any training hyperparameters, replacing dense layers with Sparse-IFT leads to significant improvements across computer vision (CV) and natural language processing (NLP) tasks, including ResNet-18 on ImageNet (+3.5%) and GPT-3 Small on WikiText-103 (-0.4 PPL), both matching larger dense model variants that use 2x or more FLOPs. To our knowledge, this is the first work to demonstrate the use of sparsity for improving the accuracy of dense models via a simple-to-use set of sparse transformations. Code is available at: https://github.com/CerebrasResearch/Sparse-IFT.
翻译:近来,有些工作探讨利用权重稀疏性提高深度神经网络(DNNs)的训练效率(测试准确率与训练FLOP之比)。这些工作旨在减少训练FLOP,但是训练稀疏权重常常导致精度损失或需要更长的训练周期,让得到的训练效率变得不够明显。相反,我们专注于利用稀疏性来提高准确性,同时使用与密集模型相同的FLOP,通过更高的准确度展现训练效率的提升。在这项工作中,我们引入了Sparse-IFT,一族Sparse Iso-FLOP转换,作为密集层的替代品来提高它们的表征能力和FLOP效率。每个转换由一个超参数(稀疏程度)参数化,并提供更大的搜索空间以找到最优的稀疏掩模。不改变任何训练超参数,用Sparse-IFT替换密集层可在计算机视觉(CV)和自然语言处理(NLP)任务中获得显著的改进,包括ResNet-18在ImageNet上(+3.5%)和GPT-3 Small在WikiText-103上(-0.4 PPL),它们都匹配使用2倍或更多FLOP的更大的密集模型变体。据我们所知,这是首次展示通过一组易于使用的稀疏变换来利用稀疏性提高密集模型准确性的工作。代码可在此处https://github.com/CerebrasResearch/Sparse-IFT找到。