The problem of support recovery in one-bit compressed sensing (1bCS) aim to recover the support of a signal $x\in \mathbb{R}^n$, denoted as supp$(x)$, from the observation $y=\text{sign}(Ax)$, where $A\in \mathbb{R}^{m\times n}$ is a sensing matrix and $|\text{supp}(x)|\leq k, k \ll n$. Under this setting, most preexisting works have a recovery runtime $Ω(n)$. In this paper, we propose two schemes that have sublinear $o(n)$ runtime. (1.i): For the universal exact support recovery, a scheme of $m=O(k^2\log(n/k)\log n)$ measurements and runtime $D=O(km)$. (1.ii): For the universal $ε$-approximate support recovery, the same scheme with $m=O(kε^{-1}\log(n/k)\log n)$ and runtime $D=O(ε^{-1}m)$, improving the runtime significantly with an extra $O(\log n)$ factor in the number of measurements compared to the current optimal (Matsumoto et al., 2023). (2): For the probabilistic exact support recovery in the sublinear regime, a scheme of $m:=O(k\frac{\log k}{\log\log k}\log n)$ measurements and runtime $O(m)$, with vanishing error probability, improving the recent result of Yang et al., 2025.


翻译:暂无翻译

0
下载
关闭预览

相关内容

压缩感知是近年来极为热门的研究前沿,在若干应用领域中都引起瞩目。 compressive sensing(CS) 又称 compressived sensing ,compressived sample,大意是在采集信号的时候(模拟到数字),同时完成对信号压缩之意。 与稀疏表示不同,压缩感知关注的是如何利用信号本身所具有的稀疏性,从部分观测样本中恢复原信号。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员