Standard weighted multiple testing methods require the weights to deterministically add up to the number of hypotheses being tested. We show that this normalization is not required when the weights are not constants, but are themselves e-values obtained from independent data. This could result in a massive increase in power, especially if the non-null hypotheses have e-values much larger than one. More broadly, we study how to combine an e-value and a p-value, and design multiple testing procedures where both e-values and p-values are available for every hypothesis. For false discovery rate control, analogous to the Benjamini-Hochberg procedure with p-values (p-BH) and the recent e-BH procedure for e-values, we propose two new procedures: ep-BH and pe-BH with finite sample validity under different dependence assumptions. These procedures are designed based on several admissible combining functions for p/e-values, which also yield methods for family-wise error rate control. We demonstrate the practical power benefits with a case study with RNA-Seq and microarray data.
翻译:标准加权多重测试方法要求将加权权重与正在测试的假设数相加。 我们显示,当重量不是常数时,并不要求这种正常化,而其本身是独立数据获得的电子值。 这可能会导致权力的大幅增长, 特别是如果非核假设的电子价值大大大于一个值。 更广泛地说, 我们研究如何将电子价值和p值结合起来, 并设计多种测试程序, 使每个假设都具备电子价值和p值。 对于假发现率控制, 类似于带有p- value(p- BH)的Benjami-Hochberg程序, 以及最近电子价值e- BH程序, 我们提出了两个新程序: ep- BH 和 pe- BH, 在不同依赖假设下具有有限的样本有效性。 这些程序的设计基于若干可接受的p/ e- value 功能, 同时产生家庭错率控制方法。 我们用 RNA- Seq 和 微型数据进行案例研究, 展示了实际的功率收益。