Scalable and efficient distributed learning is one of the main driving forces behind the recent rapid advancement of machine learning and artificial intelligence. One prominent feature of this topic is that recent progresses have been made by researchers in two communities: (1) the system community such as database, data management, and distributed systems, and (2) the machine learning and mathematical optimization community. The interaction and knowledge sharing between these two communities has led to the rapid development of new distributed learning systems and theory. In this work, we hope to provide a brief introduction of some distributed learning techniques that have recently been developed, namely lossy communication compression (e.g., quantization and sparsification), asynchronous communication, and decentralized communication. One special focus in this work is on making sure that it can be easily understood by researchers in both communities -- On the system side, we rely on a simplified system model hiding many system details that are not necessary for the intuition behind the system speedups; while, on the theory side, we rely on minimal assumptions and significantly simplify the proof of some recent work to achieve comparable results.


翻译:最近机器学习和人工智能的迅速发展是主要驱动力之一,可扩展和高效分布式学习是最近机器学习和人工智能迅速发展的主要动力之一。这个专题的一个突出特点是,两个社区的研究人员最近取得了进展:(1) 数据库、数据管理和分布式系统等系统社区,(2) 机器学习和数学优化社区。这两个社区之间的互动和知识共享导致新的分布式学习系统和理论的迅速发展。在这项工作中,我们希望简要介绍一些最近开发的分散式学习技术,即丢失的通信压缩(例如夸大和封闭)、不同步的通信和分散式通信。这项工作的一个特别重点是确保两个社区的研究人员能够容易地理解这个系统 -- -- 在系统方面,我们依靠一个简化的系统模型来隐藏许多系统细节,而这些细节对于系统超速的直觉是不必要的。在理论方面,我们依靠最低限度的假设和大量简化最近工作的证据来取得可比的结果。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
123+阅读 · 2020年9月8日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Arxiv
22+阅读 · 2019年11月24日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
123+阅读 · 2020年9月8日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Arxiv
24+阅读 · 2021年1月25日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Arxiv
22+阅读 · 2019年11月24日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Top
微信扫码咨询专知VIP会员