Over fields of characteristic unequal to $2$, we can identify symmetric matrices with homogeneous polynomials of degree $2$. This allows us to view symmetric rank-metric codes as living inside the space of such polynomials. In this paper, we generalize the construction of symmetric Gabidulin codes to polynomials of degree $d>2$ over field of characteristic $0$ or $>d$. To do so, we equip the space of homogeneous polynomials of degree $d\geq 2$ with the metric induced by the essential rank, which is the minimal number of linear forms needed to express a polynomial. We provide bounds on the minimal distance and dimension of the essential-rank metric codes we construct and provide an efficient decoding algorithm. Finally, we show how essential-rank metric codes can be seen as special instances of rank-metric codes and compare our construction to known rank-metric codes with the same parameters.
翻译:在不等于$2的特性领域上,我们可以确定对称矩阵,具有同质多元度值2美元。这使我们能够将对称分级码视为生活在这种多元度空间内。在本文中,我们把对称加比杜林码的构建概括为多度体值$d>2美元,高于特性领域$0美元或$>美元。为了做到这一点,我们用基本等级所引的量度为同质多元度2美元空间配备了同质多元度值空间,这是表达多元度值所需的最起码的线性形式。我们提供了我们所建基本度码的最低距离和尺寸的界限,并提供了有效的解码算算法。最后,我们展示了如何将基本级数码视为分级码的特殊例子,并将我们的构造与已知的分级码进行比较,以同样的参数。</s>