Over the past few years, the explosion in sparse tensor algebra workloads has led to a corresponding rise in domain-specific accelerators to service them. Due to the irregularity present in sparse tensors, these accelerators employ a wide variety of novel solutions to achieve good performance. At the same time, prior work on design-flexible sparse accelerator modeling does not express this full range of design features. This has made it difficult to compare or extend the state of the art, and understand the impact of each design choice. To address this gap, we propose TeAAL: a framework that enables the concise and precise specification and evaluation of sparse tensor algebra architectures. We use TeAAL to represent and evaluate four disparate state-of-the-art accelerators--ExTensor, Gamma, OuterSPACE, and SIGMA--and verify that it reproduces their performance with high accuracy. Finally, we demonstrate the potential of TeAAL as a tool for designing new accelerators by using it to propose a novel accelerator for the sparse MTTKRP kernel.
翻译:在过去的几年中,稀疏张量代数工作量的爆炸引起了相应的领域特定加速器的崛起,以满足这些工作量的需求。由于稀疏张量中存在的不规则性,这些加速器采用了各种新颖的解决方案来实现良好的性能。同时,关于设计灵活的稀疏加速器建模的先前工作并未表达出这种全面的设计特性。这使得难以比较或扩展现有技术,并理解每种设计选择的影响。为了填补这一空白,我们提出了 TeAAL:一个框架,可以简洁精确地描述和评估稀疏张量代数体系结构。我们使用 TeAAL 来表示和评估四种不同的最先进的加速器——ExTensor,Gamma,OuterSPACE 和 SIGMA——并验证它能够以高精度重现它们的性能。最后,我们展示了 TeAAL 作为设计新型加速器的工具的潜力,通过使用它来提出一种新型稀疏 MTTKRP 核心加速器。