Recommender systems are software applications that help users to find items of interest in situations of information overload. Current research often assumes a one-shot interaction paradigm, where the users' preferences are estimated based on past observed behavior and where the presentation of a ranked list of suggestions is the main, one-directional form of user interaction. Conversational recommender systems (CRS) take a different approach and support a richer set of interactions. These interactions can, for example, help to improve the preference elicitation process or allow the user to ask questions about the recommendations and to give feedback. The interest in CRS has significantly increased in the past few years. This development is mainly due to the significant progress in the area of natural language processing, the emergence of new voice-controlled home assistants, and the increased use of chatbot technology. With this paper, we provide a detailed survey of existing approaches to conversational recommendation. We categorize these approaches in various dimensions, e.g., in terms of the supported user intents or the knowledge they use in the background. Moreover, we discuss technological approaches, review how CRS are evaluated, and finally identify a number of gaps that deserve more research in the future.
翻译:建议系统是帮助用户在信息超负荷情况下找到感兴趣项目的软件应用。目前的研究往往假设一种一线互动模式,用户的偏好是根据过去观察到的行为估计的,而排列的建议清单是主要的、单向的用户互动形式。相互建议系统(CRS)采取不同的方法,支持更丰富的互动。例如,这些互动可以帮助改进偏好吸引程序,或让用户询问有关建议的问题和提供反馈。对CRS的兴趣在过去几年里大大增加。这一发展主要是由于自然语言处理领域取得重大进展,出现了新的语音控制家庭助理,以及更多地使用聊天室技术。我们用这份文件详细调查了现有对话建议的方法。我们将这些方法分为不同层面,例如,从支持的用户的意图或他们在背景中使用的知识的角度进行分类。此外,我们讨论技术方法,审查如何评价CRS,最后找出今后值得更多研究的一些差距。