Image Segmentation plays an essential role in computer vision and image processing with various applications from medical diagnosis to autonomous car driving. A lot of segmentation algorithms have been proposed for addressing specific problems. In recent years, the success of deep learning techniques has tremendously influenced a wide range of computer vision areas, and the modern approaches of image segmentation based on deep learning are becoming prevalent. In this article, we introduce a high-efficient development toolkit for image segmentation, named PaddleSeg. The toolkit aims to help both developers and researchers in the whole process of designing segmentation models, training models, optimizing performance and inference speed, and deploying models. Currently, PaddleSeg supports around 20 popular segmentation models and more than 50 pre-trained models from real-time and high-accuracy levels. With modular components and backbone networks, users can easily build over one hundred models for different requirements. Furthermore, we provide comprehensive benchmarks and evaluations to show that these segmentation algorithms trained on our toolkit have more competitive accuracy. Also, we provide various real industrial applications and practical cases based on PaddleSeg. All codes and examples of PaddleSeg are available at https://github.com/PaddlePaddle/PaddleSeg.


翻译:在从医学诊断到汽车自主驾驶等各种应用的计算机视觉和图像处理中,图像分割作用在计算机视觉和图像处理中发挥着必不可少的作用。为了解决具体问题,已经提出了许多分化算法。近年来,深层学习技术的成功极大地影响了广泛的计算机视觉领域,基于深层学习的现代图像分割方法正在变得十分普遍。在本篇文章中,我们为图像分割引入了一个高效开发工具包,名为PaddleSeg。该工具包旨在帮助开发者和研究人员设计分化模型、培训模型、优化性能和推断速度以及部署模型的整个过程。目前,PaddleSeg支持大约20个流行分化模型和50多个实时和高精确水平的预先培训模型。使用模块组件和主干网络,用户可以很容易地为不同要求建立100多个模型。此外,我们提供了全面的基准和评价,以显示这些以我们工具培训的分化算法具有更高的竞争力。此外,我们还提供了基于PaddleSeg的多种实际工业应用和实用案例。所有代码和PaddleSeg的例子都可在 https://gidlesdleb/Padlegh/Pagh.

0
下载
关闭预览

相关内容

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。 所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
注意力机制综述
专知会员服务
82+阅读 · 2021年1月26日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
0+阅读 · 2021年3月10日
Arxiv
19+阅读 · 2020年12月23日
Image Segmentation Using Deep Learning: A Survey
Arxiv
44+阅读 · 2020年1月15日
Arxiv
7+阅读 · 2018年12月10日
VIP会员
相关VIP内容
注意力机制综述
专知会员服务
82+阅读 · 2021年1月26日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员