We investigate how the type of Convexity of the Core function affects the Csisz\'{a}r $f$-divergence functional. A general treatment for the type of convexity has been considered and the associated perspective functions have been studied. In particular, it has been shown that when the core function is \rm{MN}-convex, then the associated perspective function is jointly \rm{MN}-convex if the two scalar mean \rm{M} and \rm{N} are the same. In the case where $\mathrm{M}\neq\mathrm{N}$, we study the type of convexity of the perspective function. As an application, we prove that the \textit{Hellinger distance} is jointly \rm{GG}-convex. As further applications, the matrix Jensen inequality has been developed for the perspective functions under different kinds of convexity.
翻译:我们调查了核心函数的稳妥性如何影响 Csisz\ {a}r $f $- divegence 功能。 已经审议了对共性类型的一般处理方法, 并研究了相关的视角函数。 特别是, 已经证明当核心函数为\ rm{ MN} convex时, 相关的视角函数是 联合 \ rm{ M}- convex, 如果两个比例平均值为\ rm{ M} 和\ rm{N} 相同的话。 在 $\ mathrm{ M\ neq\ mathrm{N} 的情况下, 我们研究了观点函数的稳妥性类型。 作为应用程序, 我们证明\ textitit{ Hellinger 距离} 是联合的\ rm{ GG}- convex。 作为进一步的应用, 已经为不同类型共性下的观点函数开发了Jensen 矩阵不平等性。