Kinship is a soft biometric detectable in media with an abundance of practical applications. Despite the difficulty of detecting kinship, annual data challenges using still-images have consistently improved performances and attracted new researchers. Now, systems reach performance levels unforeseeable a decade ago, closing in on performances acceptable to deploy in practice. Similar to other biometric tasks, we expect systems can benefit from additional modalities. We hypothesize that adding modalities to FIW, which contains only still-images, will improve performance. Thus, to narrow the gap between research and reality and enhance the power of kinship recognition systems, we extend FIW with multimedia (MM) data (i.e., video, audio, and text captions). Specifically, we introduce the first publicly available multi-task MM kinship dataset. To build FIW MM, we developed machinery to automatically collect, annotate, and prepare the data, requiring minimal human input and no financial cost. The proposed MM corpus allows the problem statements to be more realistic template-based protocols. We show significant improvements in all benchmarks with the added modalities. The results highlight edge cases to inspire future research with different areas of improvement. FIW MM provides the data required to increase the potential of automated systems to detect kinship in MM. It also allows experts from diverse fields to collaborate in novel ways.
翻译:尽管难以发现亲属关系,但使用静影图像的年度数据挑战不断提高,吸引了新的研究人员。现在,系统达到十年前无法预见的性能水平,接近可实际部署的可接受性能。与其他生物特征任务一样,我们期望系统能够从更多的模式中受益。我们假设,在仅包含死图像的媒体中为FIW添加模式将提高绩效。因此,为了缩小研究与现实之间的差距,加强亲属识别系统的力量,我们利用多媒体(MMM)数据(即视频、音频和文字说明)扩展FIW。具体地说,我们引入了第一个公开提供的多任务MMM亲属数据集。为了建立FIW MM,我们开发了自动收集、注解和编制数据的机制,需要最低限度的人类投入和无财务成本。拟议的MMP使问题陈述能够更现实地基于模板的协议。我们用添加的方式展示了所有基准的重大改进。我们突出的优势案例显示MMMM公司未来研究领域所需的自动化研究领域,也使得MIS公司能够通过不同领域进行新的研究。