We identify label errors in the test sets of 10 of the most commonly-used computer vision, natural language, and audio datasets, and subsequently study the potential for these label errors to affect benchmark results. Errors in test sets are numerous and widespread: we estimate an average of 3.4% errors across the 10 datasets, where for example 2916 label errors comprise 6% of the ImageNet validation set. Putative label errors are identified using confident learning algorithms and then human-validated via crowdsourcing (54% of the algorithmically-flagged candidates are indeed erroneously labeled). Traditionally, machine learning practitioners choose which model to deploy based on test accuracy - our findings advise caution here, proposing that judging models over correctly labeled test sets may be more useful, especially for noisy real-world datasets. Surprisingly, we find that lower capacity models may be practically more useful than higher capacity models in real-world datasets with high proportions of erroneously labeled data. For example, on ImageNet with corrected labels: ResNet-18 outperforms ResNet50 if the prevalence of originally mislabeled test examples increases by just 6%. On CIFAR-10 with corrected labels: VGG-11 outperforms VGG-19 if the prevalence of originally mislabeled test examples increases by just 5%.


翻译:我们发现10个最常用的计算机视觉、自然语言和音频数据集中的10个测试组中的标签错误,随后研究这些标签错误可能影响基准结果的可能性。测试组中的错误数量众多且范围广泛:我们估计10个数据集中平均3.4%的错误,例如,2916个标签错误占图像网络验证数据集的6%。使用自信的学习算法来识别贴标签错误,然后通过众包校验人类的标签错误(逻辑滞后候选人的54%确实被错误地贴上标签 ) 。传统上,机器学习从业者根据测试精确度选择采用哪种模型——我们的调查结果建议谨慎,建议判断正确标签测试组中的模型可能更有用,特别是对于吵闹的真实世界数据集。令人惊讶的是,我们发现低能力模型可能实际上比真实世界数据组中高能力模型有用,而错误的标签数据比例很高。例如,使用校正标签的图像网:ResNet-18 超越ResNet50,如果最初误标的测试示例的流行程度仅增加6-19个。

0
下载
关闭预览

相关内容

最新《图理论》笔记书,98页pdf
专知会员服务
75+阅读 · 2020年12月27日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
146+阅读 · 2019年10月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2018年11月20日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
0+阅读 · 2021年5月26日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2018年11月20日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员