The three-state illness death model has been established as a general approach for regression analysis of semi-competing risks data. In this paper, we apply it to a class of marginal structural models for observational data. We consider two specific such models, the usual Markov illness-death structural model and the general Markov illness-death structural model which incorporates a frailty term. For interpretation purposes, risk contrasts under the structural models are defined. Inference under the usual Markov model can be carried out using estimating equations with inverse probability weighting, while inference under the general Markov model requires a weighted EM algorithm. We study the inference procedures under both models using extensive simulations and apply them to the analysis of mid-life alcohol exposure on late-life cognitive impairment as well as mortality using the Honolulu Asia Aging Study data set. The R codes developed in this work have been implemented in the R package semicmprskcoxmsm that is publicly available on CRAN.
翻译:在本文中,我们将其应用于观测数据的一类边缘结构模型。我们考虑了两种具体的模型,即通常的Markov疾病-死亡结构模型和一般的Markov疾病-死亡结构模型,其中包括一个脆弱术语。为解释目的,根据结构模型界定了风险对比。通常的Markov模型下的推论可以使用具有反概率加权的方程进行估计,而根据一般的Markov模型的推论则需要一种加权的EM算法。我们使用广泛的模拟方法研究两种模型下的推论程序,并运用这些模型来分析关于晚年认知缺陷的中年酒精暴露以及死亡率,使用亚洲山老化研究数据集。这项工作中开发的R代码已在CRAN上公开提供的R包半cm普尔斯科克斯姆中实施。