Publicly available, large pretrained LanguageModels (LMs) generate text with remarkable quality, but only sequentially from left to right. As a result, they are not immediately applicable to generation tasks that break the unidirectional assumption, such as paraphrasing or text-infilling, necessitating task-specific supervision. In this paper, we present Reflective Decoding, a novel unsupervised algorithm that allows for direct application of unidirectional LMs to non-sequential tasks. Our 2-step approach requires no supervision or even parallel corpora, only two off-the-shelf pretrained LMs in opposite directions: forward and backward. First, in the contextualization step, we use LMs to generate ensembles of past and future contexts which collectively capture the input (e.g. the source sentence for paraphrasing). Second, in the reflection step, we condition on these "context ensembles", generating outputs that are compatible with them. Comprehensive empirical results demonstrate that Reflective Decoding outperforms strong unsupervised baselines on both paraphrasing and abductive text infilling, significantly narrowing the gap between unsupervised and supervised methods. Reflective Decoding surpasses multiple supervised baselines on various metrics including human evaluation.
翻译:公开提供、 未经培训的大型语言模式( LMS) 生成质量惊人的文本, 但只能从左向右顺序排列。 因此, 它们不能立即适用于打破单向假设的生成任务, 比如 parphrasing 或 文本填充, 需要特定任务监管 。 在本文中, 我们展示了反思解说, 这是一种新的、 未经监督的算法, 允许将单向 LMs 直接应用到非顺序任务。 我们的两步方法不需要监督, 甚至是平行的 Corpora, 只需要两个外侧向的预设 LMS 。 首先, 在背景化步骤中, 我们使用 LMS 生成过去和今后环境的集合, 集体捕捉输入( 例如 parphraising 源句 ) 。 第二, 在反思步骤中, 我们以这些“ 文字组合” 为条件, 产生与它们相容的输出。 全面的经验结果显示, 反思解析显示, 在 parphreasing 和 delective iming delviewal delages 之间, delages delages becation raism delageting delfulview delages madef