As one of the main governing equations in kinetic theory, the Boltzmann equation is widely utilized in aerospace, microscopic flow, etc. Its high-resolution simulation is crucial in these related areas. However, due to the Boltzmann equation's high dimensionality, high-resolution simulations are often difficult to achieve numerically. The moment method which Grad first proposed in 1949 [12] is among popular numerical methods to achieve efficient high-resolution simulations. We can derive the governing equations in the moment method by taking moments on both sides of the Boltzmann equation, which effectively reduces the dimensionality of the problem. However, one of the main challenges is that it leads to an unclosed moment system, and closure is needed to obtain a closed moment system. It is truly an art in designing closures for moment systems and has been a significant research field in kinetic theory. Other than the traditional human designs of closures, the machine learning-based approach has attracted much attention lately [13, 19]. In this work, we propose a machine learning-based method to derive a moment closure model for the Boltzmann-BGK equation. In particular, the closure relation is approximated by a carefully designed deep neural network that possesses desirable physical invariances, i.e., the Galilean invariance, reflecting invariance, and scaling invariance, inherited from the original Boltzmann-BGK equation. Numerical simulations on the smooth and discontinuous initial condition problem, Sod shock tube problem, and the shock structure problems demonstrate satisfactory numerical performances of the proposed invariance preserving neural closure method.


翻译:作为动能理论的主要主导方程式之一,博尔茨曼方程式在航空航天、微观流等中被广泛使用。它的高分辨率模拟在这些相关领域至关重要。然而,由于博尔茨曼方程式的高度维度,高分辨率模拟往往难以在数字上实现。1949年首次提出的这一时刻方法[12]是获得高效高分辨率模拟的流行数字方法之一。我们可以通过在博尔茨曼方程式的两侧片刻来得出当前方程式的治理方程式,从而有效地减少问题的维度。然而,其中一项主要挑战在于它导致一个不闭合的时点系统,需要关闭来获得一个闭合的时点系统。它确实是设计时空系统的一种艺术,而且是动态理论中的一个重要研究领域。除了传统的人类封闭设计外,基于机器学习的方法最近[13]、19]引起了很多注意。在这项工作中,我们提议一种基于机器学习的方法来为博尔茨-BK方方方程式的初始度生成时空模型。但是,在正方程式的初始平面平方程式中,在深度平面平面的平面结构中,精确的平整的平整的平方程式显示的平方程式的平方程式的平方程式的平差关系,在深度平方程式的平方程式的平方程式的平方程式的平方程式的平差关系是用来关系,在反映的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
元学习(Meta Learning)最全论文、视频、书籍资源整理
深度学习与NLP
22+阅读 · 2019年6月20日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
最前沿的深度学习论文、架构及资源分享
深度学习与NLP
13+阅读 · 2018年1月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
元学习(Meta Learning)最全论文、视频、书籍资源整理
深度学习与NLP
22+阅读 · 2019年6月20日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
最前沿的深度学习论文、架构及资源分享
深度学习与NLP
13+阅读 · 2018年1月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员