With the rise of distributed energy resources and sector coupling, distributed optimization can be a sensible approach to coordinate decentralized energy resources. Further, district heating, heat pumps, cogeneration, and sharing concepts like local energy communities introduce the potential to optimize heating and electricity output simultaneously. To solve this issue, we tackle the distributed multi-energy scheduling optimization problem, which describes the optimization of distributed energy generators over multiple time steps to reach a specific target schedule. This work describes a novel distributed hybrid algorithm as a solution approach. This approach is based on the heuristics of gossiping and local search and can simultaneously optimize the private objective of the participants and the collective objective, considering multiple energy sectors. We show that the algorithm finds globally near-optimal solutions while protecting the stakeholders' economic goals and the plants' technical properties. Two test cases representing pure electrical and gas-based technologies are evaluated.
翻译:随着分布式能源与多能耦合的发展,分布式优化成为协调分散式能源资源的合理途径。此外,区域供热、热泵、热电联产以及本地能源社区等共享理念,为同时优化供热与电力输出提供了潜力。针对这一问题,本文研究了分布式多能源调度优化问题,该问题描述了分布式能源发电机在多个时间步长内进行优化以达到特定目标调度方案的过程。本文提出了一种新型分布式混合算法作为解决方案。该方法基于信息传播与局部搜索的启发式策略,能够在考虑多能源部门的同时,同步优化参与者的个体目标与集体目标。研究表明,该算法能够在保障利益相关者经济目标与设备技术特性的前提下,找到全局近似最优解。文中评估了代表纯电力技术与燃气技术的两个测试案例。