We revisit the classical problem of comparing regression functions, a fundamental question in statistical inference with broad relevance to modern applications such as data integration, transfer learning, and causal inference. Existing approaches typically rely on smoothing techniques and are thus hindered by the curse of dimensionality. We propose a generalized notion of kernel-based conditional mean dependence that provides a new characterization of the null hypothesis of equal regression functions. Building on this reformulation, we develop two novel tests that leverage modern machine learning methods for flexible estimation. We establish the asymptotic properties of the test statistics, which hold under both fixed- and high-dimensional regimes. Unlike existing methods that often require restrictive distributional assumptions, our framework only imposes mild moment conditions. The efficacy of the proposed tests is demonstrated through extensive numerical studies.


翻译:我们重新审视了比较回归函数这一经典问题,这是统计推断中的一个基本问题,对数据集成、迁移学习和因果推断等现代应用具有广泛意义。现有方法通常依赖于平滑技术,因此受到维度诅咒的限制。我们提出了一种基于核的条件均值依赖的广义概念,为回归函数相等的零假设提供了新的表征。基于这一重构,我们开发了两种新颖的检验方法,利用现代机器学习技术进行灵活估计。我们建立了检验统计量的渐近性质,这些性质在固定维度和高维情形下均成立。与现有方法通常需要严格分布假设不同,我们的框架仅施加温和的矩条件。通过大量数值研究证明了所提检验方法的有效性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2024年5月28日
Arxiv
29+阅读 · 2022年3月28日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员