In learning belief networks, the single link lookahead search is widely adopted to reduce the search space. We show that there exists a class of probabilistic domain models which displays a special pattern of dependency. We analyze the behavior of several learning algorithms using different scoring metrics such as the entropy, conditional independence, minimal description length and Bayesian metrics. We demonstrate that single link lookahead search procedures (employed in these algorithms) cannot learn these models correctly. Thus, when the underlying domain model actually belongs to this class, the use of a single link search procedure will result in learning of an incorrect model. This may lead to inference errors when the model is used. Our analysis suggests that if the prior knowledge about a domain does not rule out the possible existence of these models, a multi-link lookahead search or other heuristics should be used for the learning process.
翻译:在学习信仰网络时,为减少搜索空间,广泛采用了单一链接的外观搜索。我们显示存在一组显示特殊依赖模式的概率域模型。我们用不同的评分尺度分析若干学习算法的行为,如英特罗比、有条件独立、最低描述长度和巴耶斯度量等。我们证明单链接的外观搜索程序(在这些算法中就业)无法正确学习这些模型。因此,当基础域模型实际上属于这一类时,使用单一链接搜索程序将导致学习错误模型。这可能导致在使用模型时出现推论错误。我们的分析表明,如果先前对某一域的了解不能排除这些模型的可能存在,那么在学习过程中就应该使用多链接的外观搜索或其他外观搜索。