We consider the problem of intelligently navigating through complex traffic. Urban situations are defined by the underlying map structure and special regulatory objects of e.g. a stop line or crosswalk. Thereon dynamic vehicles (cars, bicycles, etc.) move forward, while trying to keep accident risks low. Especially at intersections, the combination and interaction of traffic elements is diverse and human drivers need to focus on specific elements which are critical for their behavior. To support the analysis, we present in this paper the so-called Risk Navigation System (RNS). RNS leverages a graph-based local dynamic map with Time-To-X indicators for extracting upcoming sharp curves, intersection zones and possible vehicle-to-object collision points. In real car recordings, recommended velocity profiles to avoid risks are visualized within a 2D environment. By focusing on communicating not only the positional but also the temporal relation, RNS potentially helps to enhance awareness and prediction capabilities of the user.
翻译:我们考虑的是通过复杂的交通进行智能导航的问题。城市局势是由基本的地图结构和特殊的监管目标,例如停靠线或横行线来界定的。 动态车辆(汽车、自行车等)向前移动,同时试图降低事故风险。 特别是在交叉点,交通要素的组合和相互作用是多种多样的,人类驱动因素需要侧重于对其行为至关重要的具体要素。 为了支持分析,我们在本文件中提出了所谓的风险导航系统(风险导航系统 ) 。 RNS利用一个基于图表的地方动态地图,用时间到X指标来提取即将到来的尖曲线、交叉带和可能的车辆到物体碰撞点。在真实的汽车记录中,为避免风险而推荐的速度图在2D环境中被直观化。通过不仅注重位置上的沟通,而且注重时间关系,RNS有可能帮助提高用户的认识和预测能力。</s>