Recently, people tried to use a few anomalies for video anomaly detection (VAD) instead of only normal data during the training process. A side effect of data imbalance occurs when a few abnormal data face a vast number of normal data. The latest VAD works use triplet loss or data re-sampling strategy to lessen this problem. However, there is still no elaborately designed structure for discriminative VAD with a few anomalies. In this paper, we propose a DiscRiminative-gEnerative duAl Memory (DREAM) anomaly detection model to take advantage of a few anomalies and solve data imbalance. We use two shallow discriminators to tighten the normal feature distribution boundary along with a generator for the next frame prediction. Further, we propose a dual memory module to obtain a sparse feature representation in both normality and abnormality space. As a result, DREAM not only solves the data imbalance problem but also learn a reasonable feature space. Further theoretical analysis shows that our DREAM also works for the unknown anomalies. Comparing with the previous methods on UCSD Ped1, UCSD Ped2, CUHK Avenue, and ShanghaiTech, our model outperforms all the baselines with no extra parameters. The ablation study demonstrates the effectiveness of our dual memory module and discriminative-generative network.
翻译:最近,人们试图使用一些异常点来探测视频异常点,而不是培训过程中的正常数据。当一些异常数据面临大量正常数据时,数据不平衡的副作用就会发生。最新的 VAD工作使用三重损失或数据再抽样战略来减轻这一问题。然而,对于带有少数异常点的歧视性 VAD,仍然没有精心设计的结构。在本文中,我们建议使用一个分辨-感应-感应-感应性记忆(DREAM)异常点模型来利用一些异常点,解决数据不平衡问题。我们用两个浅色区分器来紧紧紧正常特征分布界限以及下一个框架预测的生成器。此外,我们提出一个双重记忆模块,以便在正常度和异常空间获得稀少的特征代表。结果是,DREAM不仅解决了数据不平衡问题,而且还学习了合理的特征空间。进一步的理论分析表明,我们的DREAM(DREAM)异常点也是用来应对未知的异常点的。与UCSDSD1、UHK大道和上层-Tegrelal 模型展示了我们两个模型的超度基线值。