We propose a novel methodology relating item response theory methods with small area estimation strategies in the presence of missing data. Specifically, we propose an unbiased estimator for the average ability parameter of three-parameter logistic models. Thus, we carry out an extensive simulation study in order to compare our estimator with the well-known Horvitz-Thompson estimator. According to our experiments with synthetic data, our proposal has substantial lower standard errors than its competitor. In addition, we perform an actual application by considering the Mathematics results of the 2015 Program for International Student Assessment (PISA), and also, compare our results with previous analyses. Our findings strongly suggest that our methodology is a high competitive alternative for generating compelling official statistics.
翻译:我们提出一种新的方法,在缺少数据的情况下,将项目反应理论方法与小面积估计战略联系起来。具体地说,我们建议对三参数后勤模型的平均能力参数进行公正的估计。因此,我们进行了广泛的模拟研究,以便将我们的估计数据与众所周知的Horvitz-Thompson估计数据进行比较。根据对合成数据的实验,我们的建议的标准错误大大低于其竞争者。此外,我们通过考虑2015年国际学生评估方案(PISA)的数学结果来实际应用,并且将我们的结果与以往的分析进行比较。我们的调查结果强烈表明,我们的方法是产生令人信服的官方统计数据的高竞争性替代方法。