We present LTC-SE, an improved version of the Liquid Time-Constant (LTC) neural network algorithm originally proposed by Hasani et al. in 2021. This algorithm unifies the Leaky-Integrate-and-Fire (LIF) spiking neural network model with Continuous-Time Recurrent Neural Networks (CTRNNs), Neural Ordinary Differential Equations (NODEs), and bespoke Gated Recurrent Units (GRUs). The enhancements in LTC-SE focus on augmenting flexibility, compatibility, and code organization, targeting the unique constraints of embedded systems with limited computational resources and strict performance requirements. The updated code serves as a consolidated class library compatible with TensorFlow 2.x, offering comprehensive configuration options for LTCCell, CTRNN, NODE, and CTGRU classes. We evaluate LTC-SE against its predecessors, showcasing the advantages of our optimizations in user experience, Keras function compatibility, and code clarity. These refinements expand the applicability of liquid neural networks in diverse machine learning tasks, such as robotics, causality analysis, and time-series prediction, and build on the foundational work of Hasani et al.


翻译:我们提出了LTC-SE,这是Hasani等人于2021年首次提出的液态时常(LTC)神经网络算法的改进版本。该算法将Leaky-Integrate-and-Fire(LIF)脉冲神经网络模型与Continuous-Time Recurrent Neural Networks(CTRNNs)、Neural Ordinary Differential Equations(NODEs)和独特的Gated Recurrent Units(GRUs)相结合。LTC-SE的增强功能集中在增强灵活性、兼容性和代码组织上,以满足嵌入式系统的独特限制,包括有限的计算资源和严格的性能要求。更新后的代码作为一个整合的类库,与TensorFlow 2.x兼容,为LTCCell、CTRNN、NODE和CTGRU类提供了全面的配置选项。我们对LTC-SE与其前身进行了评估,并展示了我们优化在用户体验、Keras函数兼容性和代码清晰度方面的优势。这些改进扩展了液态神经网络在多种机器学习任务中的适用性,例如机器人技术、因果分析和时间序列预测,并建立在Hasani等人的基础工作之上。

0
下载
关闭预览

相关内容

嵌入式即嵌入式系统,IEEE(美国电气和电子工程师协会)对其定义是用于控制、监视或者辅助操作机器和设备的装置,是一种专用的计算机系统;国内普遍认同的嵌入式系统定义是以应用为中心,以计算机技术为基础,软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗等严格要求的专用计算机系统;从应用对象上加以定义来说,嵌入式系统是软件和硬件的综合体,还可以涵盖机械等附属装置。
专知会员服务
40+阅读 · 2020年9月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】深度学习思维导图
机器学习研究会
15+阅读 · 2017年8月20日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
11+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】深度学习思维导图
机器学习研究会
15+阅读 · 2017年8月20日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
11+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员