Pollard used contour integration to show that the Mittag-Leffler function is the Laplace transform of a positive function, thereby proving that it is completely monotone. He also cited personal communication by Feller of a discovery of the result by ''methods of probability theory''. Feller used the two-dimensional Laplace transform of a bivariate distribution to derive the result. We prove the result by a Bayesian approach. We proceed to prove the complete monotonicity of the multi-parameter Mittag-Leffler function, thereby generalising the Pollard result by methods of Bayesian probability theory.
翻译:Pollard 使用等式集成来显示 Mittag-Leffler 函数是正函数的拉普尔变换, 从而证明它是完全单质的。 他还引用了Feller 个人关于发现“ 概率理论方法” 的结果的通信 。 Feller 使用二维的拉普尔变换来得出结果 。 我们证明了巴伊西亚方法的结果 。 我们继续证明多参数 Mittag- Leffler 函数的完全单质性, 从而通过 Bayesian 概率理论的方法将波拉德结果概括化 。