Symbolic planning can provide an intuitive interface for non-expert users to operate autonomous robots by abstracting away much of the low-level programming. However, symbolic planners assume that the initially provided abstract domain and problem descriptions are closed and complete. This means that they are fundamentally unable to adapt to changes in the environment or task that are not captured by the initial description. We propose a method that allows an agent to automatically extend its skill set, and thus the abstract description, upon encountering such a situation. We introduce strategies for generalizing from previous experience, completing sequences of key actions and discovering preconditions to ensure the efficiency of our skill sequence exploration scheme. The resulting system is evaluated in simulation on object rearrangement tasks. Compared to a Monte Carlo Tree Search baseline, our strategies for efficient search have on average a 29% higher success rate at a 68% faster runtime.
翻译:象征性规划可以为非专家用户提供直觉界面,通过抽取低级程序的大部分内容,操作自主机器人。然而,象征性规划者认为,最初提供的抽象域和问题描述是封闭和完整的。这意味着他们根本无法适应环境的变化或最初描述没有反映的任务。我们建议一种方法,使代理商在遇到这种情况时能够自动扩展其技能组,从而扩展抽象描述。我们引入了根据以往经验进行概括的战略,完成关键行动序列,并发现确保我们技能序列探索计划效率的先决条件。由此产生的系统在物体重新排列任务模拟中进行评估。与蒙特卡洛树搜索基线相比,我们高效搜索的战略平均成功率高达29%,速度更快68%。