Understanding dynamics of hydrological responses is essential in producing skillful runoff forecast. This can be quantitatively done by tracking changes in hydrology model parameters that represent physical characteristics. In this study, we implement a Bayesian estimation method in continuously estimating hydrology model parameters given observations of rainfall and runoff for small watersheds. The method is coupled with a conceptual hydrology model using a Gamma distribution-based Instantaneous Unit Hydrograph. The whole analytical framework is tested using synthetic data as well as observational data from the Fall Creek watershed. The results show that the Bayesian method can well track the hidden parameters that change inter-annually. Then the model is applied to examine temporal and spatial variability of the rainfall-runoff responses and we find 1) a systematic shift in the rainfall-runoff response for the Fall Creek watershed around 1943 and 2) a statistically significant relationship between rainfall-runoff responses and watershed sizes for selected NY watersheds. Our results demonstrate potential of the Bayesian estimation method as a rapid surveillance tool in monitoring and tracking changes of hydrological responses for small watersheds.


翻译:通过跟踪反映物理特征的水文模型参数的变化,可以量化地通过跟踪反映物理特征的水文模型参数的变化来完成这项工作。在本研究中,我们根据降雨量和小流域径流的观测结果,在持续估算水文模型参数方面采用了巴伊西亚估计方法。这种方法与概念水文学模型相结合,使用基于伽玛分布的瞬时单元水文仪表,对整个分析框架进行了测试。通过合成数据以及瀑布溪流域的观测数据,对整个分析框架进行了测试。结果显示,巴伊西亚方法可以很好地跟踪不同年份之间变化的隐藏参数。然后,该模型用于审查降雨流出应对措施的时间和空间变化。我们发现:(1) 1943年和2月左右瀑布流域降雨量流反应在统计上发生了重大变化。我们的结果表明,巴伊西亚估算方法作为监测和跟踪小流域水文反应变化的快速监测工具,具有潜力。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年10月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月11日
Arxiv
0+阅读 · 2022年2月10日
Arxiv
0+阅读 · 2022年2月10日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员