The dominant line of work in domain adaptation has focused on learning invariant representations using domain-adversarial training. In this paper, we interpret this approach from a game theoretical perspective. Defining optimal solutions in domain-adversarial training as a local Nash equilibrium, we show that gradient descent in domain-adversarial training can violate the asymptotic convergence guarantees of the optimizer, oftentimes hindering the transfer performance. Our analysis leads us to replace gradient descent with high-order ODE solvers (i.e., Runge-Kutta), for which we derive asymptotic convergence guarantees. This family of optimizers is significantly more stable and allows more aggressive learning rates, leading to high performance gains when used as a drop-in replacement over standard optimizers. Our experiments show that in conjunction with state-of-the-art domain-adversarial methods, we achieve up to 3.5% improvement with less than of half training iterations. Our optimizers are easy to implement, free of additional parameters, and can be plugged into any domain-adversarial framework.
翻译:领域适应的主要工作重点是利用域对称培训学习差异性代表。 在本文中, 我们从游戏理论角度来解释这一方法。 将域对称培训的最佳解决方案定义为本地纳什均衡, 我们表明域对称培训的梯度下降会违反优化者无症状的趋同保证, 往往会阻碍转移性能。 我们的分析引导我们用高阶 ODE 解决方案( 即 龙格- 库塔 ) 取代梯度下降, 我们由此获得无药可救的趋同保证。 优化者的这一组合非常稳定, 并允许更具侵略性的学习率, 当用作比标准优化者更低的下降替代时, 导致高绩效增益。 我们的实验显示, 与最先进的域对称方法相结合, 我们可以用不到一半的培训来达到3.5%的改进。 我们的优化者很容易实施, 无需额外的参数, 并且可以插入任何域对称框架 。