Given a word binary relation $\tau$ we define a $\tau$-Gray cycle over a finite language X to be a permutation w [i] 0$\le$i$\le$|X|--1 of X such that each word wi is an image of the previous word wi--1 by $\tau$. In that framework, we introduce the complexity measure $\lambda$(n), equal to the largest cardinality of a language X having words of length at most n, and such that a $\tau$-Gray cycle over X exists. The present paper is concerned with the relation $\tau$ = $\sigma$ k , the so-called k-character substitution, where (u, v) belongs to $\sigma$ k if, and only if, the Hamming distance of u and v is k. We compute the bound $\lambda$(n) for all cases of the alphabet cardinality and the argument n.
翻译:鉴于一个字二进制关系$\tau美元,我们定义了一个限定语言X的$tau$-Gray周期为X的变换 w[$0\le$$\le$\le$\ ⁇ X ⁇ _-1x],这样每个字wi就是前一个Wi-1字的图像$\tau美元。在这个框架内,我们引入了复杂度量值$\lambda$(n),等于一个语言X中最长的字数最大的最基本语言$\lambda$(n),并且存在X的美元-Gray周期。本文件涉及美元=$\tau=$\sigma$ k,所谓的k字符替代,即(u,v)属于$\sgmam$ k,如果而且只有u和v的宽度距离是 k。我们计算了字母基度和参数的所有案例的受约束值$\lambda$(n)。