Recent applications of machine learning (ML) reveal a noticeable shift from its use for predictive modeling in the sense of a data-driven construction of models mainly used for the purpose of prediction (of ground-truth facts) to its use for prescriptive modeling. What is meant by this is the task of learning a model that stipulates appropriate decisions about the right course of action in real-world scenarios: Which medical therapy should be applied? Should this person be hired for the job? As argued in this article, prescriptive modeling comes with new technical conditions for learning and new demands regarding reliability, responsibility, and the ethics of decision making. Therefore, to support the data-driven design of decision-making agents that act in a rational but at the same time responsible manner, a rigorous methodological foundation of prescriptive ML is needed. The purpose of this short paper is to elaborate on specific characteristics of prescriptive ML and to highlight some key challenges it implies. Besides, drawing connections to other branches of contemporary AI research, the grounding of prescriptive ML in a (generalized) decision-theoretic framework is advocated.


翻译:机器学习(ML)的近期应用显示,从数据驱动模型用于预测模型(主要用于预测(地面事实)的模型)到数据驱动模型用于规范型模型(ML)的明显变化,这意味着要学习一个模型,就现实世界情景中正确的行动方针作出适当决定:应采用哪种医疗疗法?是否雇用这个人从事这项工作?正如本条所争论的那样,规范型模型带来了新的学习技术条件和关于可靠性、责任和决策道德的新要求。因此,为了支持以合理但同时负责的方式行事的决策人员的数据驱动设计,需要有一个严格的规范型ML方法基础。本短文的目的是阐述规范型ML的具体特点,并突出其中隐含的一些关键挑战。此外,还主张将规范型ML纳入(一般化)决策理论框架。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Arxiv
4+阅读 · 2021年1月14日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Top
微信扫码咨询专知VIP会员