Signal maps are essential for the planning and operation of cellular networks. However, the measurements needed to create such maps are expensive, often biased, not always reflecting the metrics of interest, and posing privacy risks. In this paper, we develop a unified framework for predicting cellular signal maps from limited measurements. We propose and combine three mechanisms that deal with the fact that not all measurements are equally important for a particular prediction task. First, we design \emph{quality-of-service functions ($Q$)}, including signal strength (RSRP) but also other metrics of interest, such as coverage (improving recall by 76\%-92\%) and call drop probability (reducing error by as much as 32\%). By implicitly altering the training loss function, quality functions can also improve prediction for RSRP itself where it matters (e.g. MSE reduction up to 27\% in the low signal strength regime, where errors are critical). Second, we introduce \emph{weight functions} ($W$) to specify the relative importance of prediction at different parts of the feature space. We propose re-weighting based on importance sampling to obtain unbiased estimators when the sampling and target distributions mismatch(yielding 20\% improvement for targets on spatially uniform loss or on user population density). Third, we apply the {\em Data Shapley} framework for the first time in this context: to assign values ($\phi$) to individual measurement points, which capture the importance of their contribution to the prediction task. This can improve prediction (e.g. from 64\% to 94\% in recall for coverage loss) by removing points with negative values, and can also enable data minimization (i.e. we show that we can remove 70\% of data w/o loss in performance). We evaluate our methods and demonstrate significant improvement in prediction performance, using several real-world datasets.


翻译:64 信号地图对于蜂窝网络的规划和运行至关重要。 然而, 创建这种地图所需的测量量是昂贵的, 往往有偏差, 并不总是反映关注度, 并造成隐私风险。 在本文中, 我们开发了一个统一框架, 用于从有限的测量量预测蜂窝信号地图。 我们提出并合并了三个机制, 处理并非所有测量量都对特定预测任务同等重要的事实。 首先, 我们设计了 emph{ 服务质量( Q$ ), 包括信号强度( RSRP), 以及其它感兴趣的指标, 如覆盖范围( 改进 76 ⁇ - 92 ⁇ ) 和调用降低概率概率( 减少错误32 ⁇ ) 。 通过暗中修改培训损失函数, 质量功能还可以改进 RSRP 本身的预测值( 例如: MSE 将低信号强度的测量量减到 27 ) 。 其次, 我们引入了 emph{ 重量 函数的功能 。 ( $W$ ) 来说明不同功能空间空间预测的相对重要性 。 我们提议根据重要程度 评估, 在取样中, 获得关于 安全度 质量 损失 数据分布 数据 数据 数据分布 显示 20 数据 数据 数据 显示 数据 数据, 数据 显示 数据 数据 。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员