Matching markets are often organized in a multi-stage and decentralized manner. Moreover, participants in real-world matching markets often have uncertain preferences. This article develops a framework for learning optimal strategies in such settings, based on a nonparametric statistical approach and variational analysis. We propose an efficient algorithm, built upon concepts of "lower uncertainty bound" and "calibrated decentralized matching," for maximizing the participants' expected payoff. We show that there exists a welfare-versus-fairness trade-off that is characterized by the uncertainty level of acceptance. Participants will strategically act in favor of a low uncertainty level to reduce competition and increase expected payoff. We prove that participants can be better off with multi-stage matching compared to single-stage matching. We demonstrate aspects of the theoretical predictions through simulations and an experiment using real data from college admissions.
翻译:匹配市场通常以多阶段和分散的方式组织。 此外,真实世界匹配市场的参与者往往有不确定的偏好。 本条在非参数统计方法和变式分析的基础上,为在这种环境下学习最佳战略制定了框架。 我们提出了一个高效的算法,以“低不确定性约束”和“调整分散匹配”的概念为基础,最大限度地实现参与者预期的收益最大化。 我们显示存在着一种以接受程度不确定为特点的福利-反公平交易。参与者将采取战略行动,支持低不确定性水平,以减少竞争和增加预期的回报。我们证明参与者可以比单阶段匹配更好的多阶段匹配。我们通过模拟和实验,利用大学录取的真实数据来展示理论预测的各个方面。