The past decade has seen a substantial rise in the amount of mis- and disinformation online, from targeted disinformation campaigns to influence politics, to the unintentional spreading of misinformation about public health. This development has spurred research in the area of automatic fact checking, from approaches to detect check-worthy claims and determining the stance of tweets towards claims, to methods to determine the veracity of claims given evidence documents. These automatic methods are often content-based, using natural language processing methods, which in turn utilise deep neural networks to learn higher-order features from text in order to make predictions. As deep neural networks are black-box models, their inner workings cannot be easily explained. At the same time, it is desirable to explain how they arrive at certain decisions, especially if they are to be used for decision making. While this has been known for some time, the issues this raises have been exacerbated by models increasing in size, and by EU legislation requiring models to be used for decision making to provide explanations, and, very recently, by legislation requiring online platforms operating in the EU to provide transparent reporting on their services. Despite this, current solutions for explainability are still lacking in the area of fact checking. This thesis presents my research on automatic fact checking, including claim check-worthiness detection, stance detection and veracity prediction. Its contributions go beyond fact checking, with the thesis proposing more general machine learning solutions for natural language processing in the area of learning with limited labelled data. Finally, the thesis presents some first solutions for explainable fact checking.


翻译:过去十年来,在线错误和虚假信息的数量大幅上升,从有针对性的影响政治的虚假信息运动到无意中散布关于公共健康的错误信息。这一发展促进了自动事实检查领域的研究,从检测可核实索赔要求和确定推特对索赔要求的立场的方法,到确定索赔要求真实性的方法,这些自动方法往往以内容为基础,使用自然语言处理方法,利用深层神经网络从文字中学习更高层次的特征,以便作出预测。深神经网络是黑盒模型,因此其内部工作不易解释。与此同时,有必要解释它们如何达成某些决定,特别是如果这些决定用于决策的话。虽然人们已经知道这一点已有一段时间,但是由于模型规模的扩大,以及欧盟立法要求使用模型来做出解释,以及最近通过立法要求在线平台对其服务进行透明报告。尽管目前对内部工作的解决方案是黑盒模型,但它们的内部工作无法轻易解释。与此同时,有必要解释它们是如何达成某些决定的,特别是如果这些决定用于决策,特别是如果这些决定被使用的话。尽管这一点已经为人们所知道,但这种增加问题因模型的出现,但欧盟立法要求使用模型来作出解释解释解释解释,以便透明地报告其服务。尽管如此,但目前用于核对的解决方案的解决方案仍然缺乏核查领域,在进行事实检查方面缺乏实地检查。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
34+阅读 · 2020年12月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Metrics for Explainable AI: Challenges and Prospects
Arxiv
4+阅读 · 2018年12月11日
VIP会员
相关资讯
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员