In this paper, we introduce Temporal Multiresolution Graph Neural Networks (TMGNN), the first architecture that both learns to construct the multiscale and multiresolution graph structures and incorporates the time-series signals to capture the temporal changes of the dynamic graphs. We have applied our proposed model to the task of predicting future spreading of epidemic and pandemic based on the historical time-series data collected from the actual COVID-19 pandemic and chickenpox epidemic in several European countries, and have obtained competitive results in comparison to other previous state-of-the-art temporal architectures and graph learning algorithms. We have shown that capturing the multiscale and multiresolution structures of graphs is important to extract either local or global information that play a critical role in understanding the dynamic of a global pandemic such as COVID-19 which started from a local city and spread to the whole world. Our work brings a promising research direction in forecasting and mitigating future epidemics and pandemics.


翻译:在本文中,我们引入了时间多分辨率图神经网络(TMGNN),这是第一个既学会建立多尺度和多分辨率图结构,又结合时间序列信号以捕捉动态图的时间变化的架构。我们根据从几个欧洲国家实际的COVID-19大流行和天花大流行中收集的历史时间序列数据,运用了我们提议的模型来预测流行病和流行病未来蔓延的任务,并与其他最先进的时间结构以及图表学习算法相比取得了竞争性结果。我们已经表明,获取多尺度和多分辨率图结构对于提取当地或全球信息非常重要,这些信息在理解诸如COVID-19等全球流行病的动态方面发挥着至关重要的作用。 COVID-19从一个地方城市开始,传播到整个世界。我们的工作为预测和减轻未来流行病和流行病带来了充满希望的研究方向。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2021年6月30日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
25+阅读 · 2022年1月3日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
20+阅读 · 2019年11月23日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关论文
Arxiv
25+阅读 · 2022年1月3日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
20+阅读 · 2019年11月23日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
26+阅读 · 2018年2月27日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员