This study presents a broad perspective of hybrid process modeling and optimization combining the scientific knowledge and data analytics in bioprocessing and chemical engineering with a science-guided machine learning (SGML) approach. We divide the approach into two major categories. The first refers to the case where a data-based ML model compliments and makes the first-principle science-based model more accurate in prediction, and the second corresponds to the case where scientific knowledge helps make the ML model more scientifically consistent. We present a detailed review of scientific and engineering literature relating to the hybrid SGML approach, and propose a systematic classification of hybrid SGML models. For applying ML to improve science-based models, we present expositions of the sub-categories of direct serial and parallel hybrid modeling and their combinations, inverse modeling, reduced-order modeling, quantifying uncertainty in the process and even discovering governing equations of the process model. For applying scientific principles to improve ML models, we discuss the sub-categories of science-guided design, learning and refinement. For each sub-category, we identify its requirements, advantages and limitations, together with their published and potential areas of applications in bioprocessing and chemical engineering.


翻译:这项研究介绍了将生物加工和化学工程的科学知识和数据分析的科学知识和数据分析与科学指导机器学习(SGML)方法相结合的混合过程模型和优化的广泛观点。我们将这一方法分为两大类:一是基于数据ML模型的互补性,使以科学为基础的第一原则模型在预测中更加准确;二是科学知识有助于使ML模型在科学上更加一致的案例。我们详细审查了与生物加工和化学工程混合方法有关的科学和工程文献,并提议对混合的SGML模型进行系统分类。为了应用ML来改进以科学为基础的模型,我们介绍了直接序列和平行混合模型及其组合的子分类、反向建模、减序模型、量化过程的不确定性,甚至发现过程模型的管理方程式。为了应用科学原则来改进ML模型,我们讨论了科学指导设计、学习和完善的子类别。关于每个子类别,我们确定了其直接序列和平行混合模型及其组合的子类别、优势和局限性及其已公布的生物工程应用领域和潜在领域。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【2022新书】机器学习基础,225页pdf,Machine Learning The Basics
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
11+阅读 · 2021年3月25日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员