Intelligent Transportation System (ITS) has become one of the essential components in Industry 4.0. As one of the critical indicators of ITS, efficiency has attracted wide attention from researchers. However, the next generation of urban traffic carried by multiple transport service providers may prohibit the raw data interaction among multiple regions for privacy reasons, easily ignored in the existing research. This paper puts forward a federated learning-based vehicle control framework to solve the above problem, including interactors, trainers, and an aggregator. In addition, the density-aware model aggregation method is utilized in this framework to improve vehicle control. What is more, to promote the performance of the end-to-end learning algorithm in the safety aspect, this paper proposes an imitation learning algorithm, which can obtain collision avoidance capabilities from a set of collision avoidance rules. Furthermore, a loss-aware experience selection strategy is also explored, reducing the communication overhead between the interactors and the trainers via extra computing. Finally, the experiment results demonstrate that the proposed imitation learning algorithm obtains the ability to avoid collisions and reduces discomfort by 55.71%. Besides, density-aware model aggregation can further reduce discomfort by 41.37%, and the experience selection scheme can reduce the communication overhead by 12.80% while ensuring model convergence.


翻译:智能运输系统(ITS)已成为工业4.0.0.。 作为ITS的关键指标之一,效率吸引了研究人员的广泛关注。然而,由多个运输服务提供商携带的下一代城市交通由于隐私原因可能禁止多个区域之间的原始数据互动,而现有研究对此很容易忽视。本文件提出了一个基于学习的联邦车辆控制框架,以解决上述问题,包括互动者、培训员和聚合器。此外,在这个框架中使用了密度认知模型集成方法,以改进车辆控制。此外,为了在安全方面促进端到端学习算法的性能,本文建议采用模拟学习算法,这种算法可以从一套避免碰撞的规则中获得避免碰撞的能力。此外,还探讨了一种认识损失的经验选择战略,通过额外计算减少互动者与培训者之间的通信间接费用。最后,实验结果表明,拟议的模拟学习算法获得了避免碰撞和减少不兼容性的能力。此外,通过降低密度12.80模型集成率,同时通过选择磁性组合法,可以进一步降低磁性组合率。

1
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年6月24日
HAQ: Hardware-Aware Automated Quantization
Arxiv
6+阅读 · 2018年11月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员