3D face modeling has been an active area of research in computer vision and computer graphics, fueling applications ranging from facial expression transfer in virtual avatars to synthetic data generation. Existing 3D deep learning generative models (e.g., VAE, GANs) allow generating compact face representations (both shape and texture) that can model non-linearities in the shape and appearance space (e.g., scatter effects, specularities, etc.). However, they lack the capability to control the generation of subtle expressions. This paper proposes a new 3D face generative model that can decouple identity and expression and provides granular control over expressions. In particular, we propose using a pair of supervised auto-encoder and generative adversarial networks to produce high-quality 3D faces, both in terms of appearance and shape. Experimental results in the generation of 3D faces learned with holistic expression labels, or Action Unit labels, show how we can decouple identity and expression; gaining fine-control over expressions while preserving identity.
翻译:3D面部建模一直是计算机视觉和计算机图形研究的一个积极领域,有助于从虚拟变异器的面部表达方式转移到合成数据生成等各种应用。现有的3D深层学习基因模型(如VAE、GANs)能够产生能够模拟形状和外观空间非线性(如散射效应、外观等)的紧凑面部示意图(形状和纹理)。然而,它们缺乏控制微妙表达方式生成的能力。本文提出了一个新的3D面部基因化模型,该模型可以调和身份和表达方式,并对表达方式提供颗粒控制。特别是,我们提议使用一对受监督的自动编码和基因对抗网络来生成高质量的3D脸部外观(外观和形状)。通过整体表达标签或行动单位标签来学习的3D面的实验结果显示我们如何区分身份和表达方式;在维护身份的同时获得对表达方式的微调控制。