We develop a new approach for identifying and estimating average causal effects in panel data under a linear factor model with unmeasured confounders. Compared to other methods tackling factor models such as synthetic controls and matrix completion, our method does not require the number of time periods to grow infinitely. Instead, we draw inspiration from the two-way fixed effect model as a special case of the linear factor model, where a simple difference-in-differences transformation identifies the effect. We show that analogous, albeit more complex, transformations exist in the more general linear factor model, providing a new means to identify the effect in that model. In fact many such transformations exist, called bridge functions, all identifying the same causal effect estimand. This poses a unique challenge for estimation and inference, which we solve by targeting the minimal bridge function using a regularized estimation approach. We prove that our resulting average causal effect estimator is root-N consistent and asymptotically normal, and we provide asymptotically valid confidence intervals. Finally, we provide extensions for the case of a linear factor model with time-varying unmeasured confounders.
翻译:我们开发了一种新的方法,用一个线性系数模型来识别和估计小组数据中与未计量的混杂者有关的平均因果效应。与处理合成控制和矩阵完成等要素模型的其他方法相比,我们的方法并不要求无限增长时间段。相反,我们从双向固定效应模型中汲取灵感,作为线性系数模型的一个特例,在线性系数模型中,简单的差异变异作用可以确定效果。我们表明,在比较普通的线性系数模型中存在类似但更为复杂的变异,提供了确定该模型效果的新手段。事实上,许多这样的变异都称为桥梁功能,所有变异都确定了相同的因果估计值。这对估计和推断来说是一个独特的挑战,我们通过使用定期估计方法确定最小的桥性功能来解决。我们证明,我们由此得出的平均因果效应估计值是根-N一致的,并且只是个正常的,我们提供了不那么有效的信任度间隔。最后,我们为线性要素模型提供了延展期,与时间变化不测的配置者。